
Pytest Mock Resources
Release 1.2.2

unknown

Jul 24, 2023

CONTENTS:

1 Quickstart 1
1.1 Docker . 1
1.2 Introduction . 1
1.3 The Pitch . 2
1.4 Existing Resources (many more possible) . 3
1.5 Features . 3
1.6 Installation . 3
1.7 Possible Future Resources . 4
1.8 Python 2 . 4

2 Fixtures 5
2.1 Relational Database Fixtures . 5
2.2 Postgres . 13
2.3 Redshift . 14
2.4 SQLite . 14
2.5 Mongo . 16
2.6 Moto . 17
2.7 Redis . 19

3 Async 21
3.1 pytest-asyncio . 22

4 Config 23
4.1 Environment Variables . 23
4.2 Fixture Configuration . 23
4.3 Default Configuration . 24

5 CLI 25

6 CI Service Support 27
6.1 CircleCi . 27
6.2 GitLab . 28

7 API 29
7.1 Fixture Functions . 29
7.2 Fixture Config . 31

8 Contributing 35
8.1 Prerequisites . 35
8.2 Getting Setup . 35
8.3 Need help . 36

i

9 Indices and tables 37

Index 39

ii

CHAPTER

ONE

QUICKSTART

1.1 Docker

In order to run tests which interact with most fixture types (sqlite being an example of one such exception). Docker
needs to be available and running:

Make sure you have docker installed:

• MacOs

• Nix

• Windows

Once you have docker installed, pytest will automatically up and down any necessary docker containers so you
don’t have to, by default all containers will be spun up/down per pytest invocation.

` .. image:: https://readthedocs.org/projects/pytest-mock-resources/badge/?version=latest

target https://readthedocs.org/projects/pytest-mock-resources/badge/?version=latest

alt Documentation

Status <https://pytest-mock-resources.readthedocs.io/en/latest/?badge=latest>`_

1.2 Introduction

Code which depends on external resources such a databases (postgres, redshift, etc) can be difficult to write automated
tests for. Conventional wisdom might be to mock or stub out the actual database calls and assert that the code works
correctly before/after the calls.

However take the following, simple example:

def serialize(users):
return [

{
'user': user.serialize(),
'address': user.address.serialize(),
'purchases': [p.serialize() for p in user.purchases],

}
for user in users

(continues on next page)

1

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/install/
https://docs.docker.com/docker-for-windows/install/
https://img.shields.io/circleci/build/gh/schireson/pytest-mock-resources/master
https://codecov.io/gh/schireson/pytest-mock-resources
https://readthedocs.org/projects/pytest-mock-resources/badge/?version=latest
https://readthedocs.org/projects/pytest-mock-resources/badge/?version=latest
https://pytest-mock-resources.readthedocs.io/en/latest/?badge=latest

Pytest Mock Resources, Release 1.2.2

(continued from previous page)

]

def view_function(session):
users = session.query(User).join(Address).options(selectinload(User.purchases)).

→˓all()
return serialize(users)

Sure, you can test serialize, but whether the actual query did the correct thing truly requires that you execute the
query.

1.3 The Pitch

Having tests depend upon a real postgres instance running somewhere is a pain, very fragile, and prone to issues
across machines and test failures.

Therefore pytest-mock-resources (primarily) works by managing the lifecycle of docker containers and pro-
viding access to them inside your tests.

As such, this package makes 2 primary assumptions:

• You’re using pytest (hopefully that’s appropriate, given the package name)

• For many resources, docker is required to be available and running (or accessible through remote docker).

If you aren’t familiar with Pytest Fixtures, you can read up on them in the Pytest documentation.

In the above example, your test file could look something like

from pytest_mock_resources import create_postgres_fixture
from models import ModelBase

pg = create_postgres_fixture(ModelBase, session=True)

def test_view_function_empty_db(pg):
response = view_function(pg)
assert response == ...

def test_view_function_user_without_purchases(pg):
pg.add(User(...))
pg.flush()

response = view_function(pg)
assert response == ...

def test_view_function_user_with_purchases(pg):
pg.add(User(..., purchases=[Purchase(...)]))
pg.flush()

response = view_function(pg)
assert response == ...

2 Chapter 1. Quickstart

https://docs.pytest.org/en/latest/fixture.html

Pytest Mock Resources, Release 1.2.2

1.4 Existing Resources (many more possible)

• SQLite

from pytest_mock_resources import create_sqlite_fixture

• Postgres

from pytest_mock_resources import create_postgres_fixture

• Redshift

note Uses postgres under the hood, but the fixture tries to support as much redshift functionality as possible
(including redshift’s COPY/UNLOAD commands).

from pytest_mock_resources import create_redshift_fixture

• Mongo

from pytest_mock_resources import create_mongo_fixture

• Redis

from pytest_mock_resources import create_redis_fixture

• MySQL

from pytest_mock_resources import create_mysql_fixture

• Moto

from pytest_mock_resources import create_moto_fixture

1.5 Features

General features include:

• Support for “actions” which pre-populate the resource you’re mocking before the test

• Async fixtures

• Custom configuration for container/resource startup

1.6 Installation

Basic fixture support i.e. SQLite
pip install "pytest-mock-resources"

General, docker-based fixture support
pip install "pytest-mock-resources[docker]"

Mongo fixture support, installs `pymongo`
pip install "pytest-mock-resources[mongo]"

(continues on next page)

1.4. Existing Resources (many more possible) 3

https://pytest-mock-resources.readthedocs.io/en/latest/async.html

Pytest Mock Resources, Release 1.2.2

(continued from previous page)

Moto fixture support, installs non-driver extras specific to moto support
pip install "pytest-mock-resources[moto]"

Redis fixture support, Installs `redis` client
pip install "pytest-mock-resources[redis]"

Redshift fixture support, installs non-driver extras specific to redshift support
pip install "pytest-mock-resources[redshift]"

Additionally there are number of convenience extras currently provided for installing drivers/clients of specific fea-
tures. However in most cases, you should already be installing the driver/client used for that fixture as as first-party
dependency of your project.

As such, we recommend against using these extras, and instead explcitly depending on the package in question in your
own project’s 1st party dependencies.

Installs psycopg2/psycopg2-binary driver
pip install "pytest-mock-resources[postgres-binary]"
pip install "pytest-mock-resources[postgres]"

Installs asyncpg driver
pip install "pytest-mock-resources[postgres-async]"

Installs pymysql driver
pip install "pytest-mock-resources[mysql]"

1.7 Possible Future Resources

• Rabbit Broker

• AWS Presto

Feel free to file an issue if you find any bugs or want to start a conversation around a mock resource you want
implemented!

1.8 Python 2

Releases in the 1.x series were supportive of python 2. However starting from 2.0.0, support for python 2 was dropped.
We may accept bugfix PRs for the 1.x series, however new development and features will not be backported.

4 Chapter 1. Quickstart

https://github.com/schireson/pytest-mock-resources/issues

CHAPTER

TWO

FIXTURES

This package gives you the capability to create as many fixtures to represent as many mock instances of e.g. SQLite,
Postgres, Mongo, etc might actually exist in your system.

Furthermore, you can prepopulate the connections those fixtures yield to you with whatever DDL, preset data, or
functions you might require.

A new resource (database or otherwise) is created on a per test database, which allows each fixture to be used in
multiple tests without risking data leakage or side-effects from one test to another.

Note: By default the underlying containers are reused across tests to amortize the container startup cost. Tests then
create new “resources” (e.g. databases) within that container to avoid inter-test pollution.

This can cause inter-test dependencies if your tests are altering container-global resources like database users. In the
event this is a problem, resources can be configured to not be session fixtures, although this will likely be drastically
slower overall.

See Config for information on customizing the configuration for docker-based fixtures.

2.1 Relational Database Fixtures

All of the officially supported relational databases (SQLite, Postgres, Redshift, and MYSQL) support a minimum
level of parity of features. Generally they will all have intercompatibile function signatures, except wherein there are
particular features supported by a database which is unsupported in one of the others.

For database-specific support, see the corresponding Redshift, Postgres, or SQLite pages.

2.1.1 Basics

Say you’ve written a function, which accepts a sqlalchemy.Engine, and performs some operation which is
literally not able to be tested without a connection to a real database.

Listing 1: package/utilities.py

def sql_sum(redshift_conn):
"""SUPER OPTIMIZED WAY to add up to 15.
"""
redshift_conn.execute("CREATE TEMP TABLE mytemp(c INT);")
redshift_conn.execute(

"""
INSERT INTO mytemp(c)

(continues on next page)

5

Pytest Mock Resources, Release 1.2.2

(continued from previous page)

VALUES (1), (2), (3), (4), (5);
"""

)

return redshift_conn.execute("SELECT SUM(c) FROM mytemp;").fetchone()

With this library, you would define your test fixture, for the corresponding database in use. And then any references
to that fixture in a test, will produce a sqlalchemy.Engine.

Alternatively, you can specify session=True, to ensure you’re handed a sqlalchemy.orm.Session instead.

Listing 2: tests/test_utilities.py

Redshift Example:
from pytest_mock_resources import create_redshift_fixture
from package.utilities import sql_sum

db = create_redshift_fixture()
or
db = create_redshift_fixture(session=True)

def test_sql_sum(db):
sql_sum(db)

Postgres Example:
from pytest_mock_resources import create_postgres_fixture
from package.utilities import sql_sum

db = create_postgres_fixture()
or
db = create_postgres_fixture(session=True)

def test_sql_sum(db):
sql_sum(db)

Note that beyond your definition of the fixture, the test code remains exactly the same between examples among
different databases.

What’s happening when under the hood is that a docker container (except with SQLite) is being spun up on a per-test-
session basis, and then individual sub-container databases are being created on a per-test basis, and yielded to each
test.

2.1.2 Preset DDL/Data

In previous examples, we’ve largely ignored the reality that an empty database is often not useful by itself. You’ll need
to populate that database with some minimal amount of schemata and/or data in order to be useful.

To address this, the create_*_fixture functions take in an optional number of “Ordered Actions” which can be
used to setup the fixture prior to you using it. As the name might imply, the “actions” are executed, in order, before
the test body is entered.

6 Chapter 2. Fixtures

Pytest Mock Resources, Release 1.2.2

Metadata/Models

The SQLAlchemy ORM allows you to define declarative models to represent your database tables and then use those
models to interface with your database.

The most direct way to pre-create all the DDL which your code depends on, particularly if you already define
sqlalchemy.MetaData or declarative models, would be to specify either as an ordered action.

For example, given a models package:

Listing 3: package/models.py

from sqlalchemy import Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class User(Base):
__tablename__ = "user"
__table_args__ = {"schema": "stuffs"}

id = Column(Integer, primary_key=True, autoincrement=True)
name = Column(String)

A corresponding test file could look like

Listing 4: tests/test_user.py

from package.models import Base
from pytest_mock_resources import create_postgres_fixture

pg = create_redshift_fixture(Base)
or
pg = create_redshift_fixture(Base.metadata)

def test_something_exists(pg):
Insert a row into the user table DURING the test
pg.execute("INSERT INTO stuffs.user(name) VALUES ('Beef',)")

Confirm that the user table exists and the row was inserted
rows = pg.execute("SELECT name FROM stuffs.user")
result = [row[0] for row in rows]
assert ["Picante", "Beef"] == result

Note: If you have split MetaData, you can pass in as many unique MetaData or declarative_base instances as
necessary.

Even if you don’t plan on using SQLAlchemy models or the ORM layer throughout your actual code, defining these
models can be EXTREMELY beneficial for DDL maintenance and testing.

info

If you are working on a new project which requires a SQL Database layer, we HIGHLY recommend using
SQLAlchemy in combination with alembic to create and maintain your DDL.

2.1. Relational Database Fixtures 7

https://www.sqlalchemy.org/
https://docs.sqlalchemy.org/en/latest/orm/tutorial.html#declare-a-mapping
https://alembic.sqlalchemy.org/en/latest/

Pytest Mock Resources, Release 1.2.2

info

If you are working on a project with pre-existing DDL, you can use a tool like sqlacodegen to generate the models
from your current DDL!

Bloated Metadata

By default, each DB fixture recreates the whole database from scratch prior to each test to ensure there are no side-
effects from one test to another.

Recreating DDL is generally fairly quick but if there are a large amount of tables to create, test setup-time can begin
to suffer. In one of our databases, there are more than a 1000 tables! As a result, it takes ~5 seconds for each test to
setup which is unacceptable. If you have 200 tests running linearly, you might be spending an additional ~17 minutes,
waiting for tests to complete.

To counteract this, you can provide an iterable of table names to your create_*_fixture call. This will tell the
call to ONLY create the tables you have specified instead of creating all of them.

This can be a great way to keep track of all the tables a given block of code interacts with as well!

Listing 5: tests/conftest.py

from pytest_mock_resources import create_redshift_fixture, Statements
from redshift_schema import meta, example_table

redshift = create_redshift_fixture(
meta,
ONLY create this small set of tables for this test.
tables=[

example_table,
"example_table_mapping_table",

]
)

The tables argument accepts any of:

• SQLAlchemy declarative model class

• SQLAlchemy table object

• Exact string table name

• Globbed table name

Globbing, in comparison to regular expressions, in this context tends to lead to shorter and easier to read defini-
tions. This is especially true when one uses schemas, leading to . literals in your fully qualified table names.

create_<backend>_fixture(Base, tables=['schema.*']) # Only tables for a specific
→˓schema
create_<backend>_fixture(Base, tables=['category_*']) # Only tables with a
→˓specific suffix
create_<backend>_fixture(Base, tables=['*_category']) # Only tables with a
→˓specific prefix

8 Chapter 2. Fixtures

https://github.com/agronholm/sqlacodegen

Pytest Mock Resources, Release 1.2.2

Rows

If you are using SQLAlchemy to define your schema, you have the capability to use the Rows class to conveniently
pre-populate your db fixture with data.

This will automatically insert any records defined by the Rows before test execution.

info

You can also omit the above Base reference to the model base or metadata when using rows, yielding redshift =
create_redshift_fixture(rows).

Rows will backtrack to the corresponding metadata and treat it as though the metadata were passed in immediately
preceding the Rows action.

Statements/StaticStatements

Either a Statements or StaticStatements object can be constructed, which will execute arbitrary SQL before
entering the test.

Both operate in exactly the same way, however StaticStatements let the library know that the included SQL
statements are safe to “cache” in order to reduce database creation costs. For that reason, you should prefer a
StaticStatements over a Statements where possible.

For example, the execution of DDL for which there is not a supported SQLALchemy abstraction, or other transaction-
specific operations, are places where a static statement might be inappropriate.

Listing 6: tests/test_something.py

from pytest_mock_resources import create_redshift_fixture, Statements

statements = Statements(
"""
CREATE TABLE account(

user_id serial PRIMARY KEY,
username VARCHAR (50) UNIQUE NOT NULL,
password VARCHAR (50) NOT NULL

);
""",
"INSERT INTO account VALUES (1, 'user1', 'password1')",

)

redshift = create_redshift_fixture(statements)

def test_something_exists(redshift):
execute = redshift.execute("SELECT password FROM account")
result = sorted([row[0] for row in execute])
assert ["password1"] == result

Note: You can either supply an SQL str, or SQLAlchemy statements (such as text(), select, insert, DDL, or
other constructs),

2.1. Relational Database Fixtures 9

Pytest Mock Resources, Release 1.2.2

Functions

Sometimes Rows or Statements are not dynamic enough. So any callable can be passed as an action. The only
requirement is that it accept a lone argument for the test engine/session.

Note: The same object which is injected into the test function is handed to the provided function as its sole argument.

That is, if you provide session=True, you will receive a session object, whereas otherwise you will receive a
vanilla engine object.

Create models with relationships
class User(Base):

__tablename__ = "user"
__table_args__ = {"schema": "stuffs"}

id = Column(Integer, primary_key=True, autoincrement=True)
name = Column(String, nullable=False)

objects = relationship("Object", back_populates="owner")

class Object(Base):
__tablename__ = "object"
__table_args__ = {"schema": "stuffs"}

id = Column(Integer, primary_key=True, autoincrement=True)
name = Column(String, nullable=False)
belongs_to = Column(Integer, ForeignKey('stuffs.user.id'))

owner = relationship("User", back_populates="objects")

Leverage model relationships in a seed data function
def session_fn(session):

session.add(User(name='Fake Name', objects=[Object(name='Boots')]))

Leverage seed data function to create seeded fixture
postgres = create_postgres_fixture(Base, session_fn)

Leverage seeded fixture
def test_session_function(postgres):

execute = postgres.execute("SELECT * FROM stuffs.object")
owner_id = sorted([row[2] for row in execute])[0]

execute = postgres.execute("SELECT * FROM stuffs.user where id = {id}".
→˓format(id=owner_id))

result = [row[1] for row in execute]

assert result == ['Fake Name']

10 Chapter 2. Fixtures

Pytest Mock Resources, Release 1.2.2

2.1.3 Manually Constructed Engines

Due to the dynamic nature of the creation of the databases themselves, its non-trivial for a user to know what the
connection string, for example, would be for the database ahead of time. Which makes testing code which manually
constructs its own sqlalchemy.Engine objects internally more difficult.

Therefore, generally preferable way to use the fixtures is that you will be yielded a preconstructed engine pointing at
the database to which your test is intended to run against; and to write your code such that it accepts the engine as a
function/class parameter.

However, this is not always possible for all classes of tests, nor does it help for code which might already be written
with a tightly coupled mechanism for engine creation.

For (contrived) example:

Listing 7: package/entrypoint.py

import psycopg2
import sqlalchemy

def psycopg2_main(**config):
conn = psycopg2.connect(**config)
do_the_thing(conn)
...

def sqlalchemy_main(**config):
conn = sqlalchemy.create_engine(**config)
do_the_thing(conn)
...

As you can see, in order to test these functions, we must pass in valid credentials rather than an engine itself.

pmr_credentials

Each of the fixtures you might create will attach a pmr_credentials attribute onto the engine it yields to the test
which will be an instance of a Credentials class.

Attributes on this class include all the credentials required to connect to the particular database. Additionally, there are
convenience methods specifically meant to coerce the credentials into a form directly accepted by common connection
mechanisms like psycopg2.connect or sqlalchemy.engine.url.URL.

from pytest_mock_resources import (
create_postgres_fixture,
create_redshift_fixture,

)

from package import entrypoint

postgres = create_postgres_fixture()
redshift = create_redshift_fixture()

def test_psycopg2_main_postgres(postgres):
credentials = postgres.pmr_credentials
result = entrypoint.psycopg2_main(**credentials.as_psycopg2_connect_args())
assert result ...

def test_sqlalchemy_main_postgres(postgres):

(continues on next page)

2.1. Relational Database Fixtures 11

Pytest Mock Resources, Release 1.2.2

(continued from previous page)

credentials = postgres.pmr_credentials
result = entrypoint.sqlalchemy_main(**credentials.as_url())
assert result ...

2.1.4 Template Databases

Note: This feature was added in v2.4.0 and currently only supports Postgres.

The template_database fixture keyword argument, and :class:StaticStatements did not exist prior to this ver-
sion.

By default, the supported fixtures attempt to amortize the cost of performing fixture setup through the creation of
database templates (postgres). If, for whatever reason, this feature does not interact well with your test setup, you can
disable the behavior by setting template_database=False.

With this feature enabled, all actions considered to be “safe” to statically will performed exactly once per test session,
in a template database. This amortizes their initial cost and offloads the majority of the work to postgres itself. Then
all “dynamic” actions will be performed on a per-test-database basis.

Consider the following fixture

from models import Base, Example
from pytest_mock_resources import create_postgres_fixture, StaticStatements,
→˓Statements, Rows

def some_setup(engine):
some complex logic, not able to be performed as a `Statements`

pg = create_postgres_fixture(
Base,
Rows(Example(id=1)),
StaticStatements('INSERT INTO foo () values ()'),
Statements('INSERT INTO foo () values ()'),
some_setup,

)

Each of the arguments given to create_postgres_fixture above are “actions” performed in the given order.
Typically (in particular for non-postgres fixtures, today), all of the steps would be performed on a completely empty
database prior to the engine/session being handed to the test function.

Static Actions

Static actions are actions which are safe to be executed exactly once, because they have predictable semantics which
both safely be executed once per test session, as well as happen in a completely separate transactions and database,
from the one handed to the test.

Static actions include:

• MetaData: Base in the above example is an alias to Base.metadata; i.e. a sqlalchemy.MetaData
object that creates all objects defined on the metadata.

• Rows: Rows only work in the context of a session, and essentially define a set of INSERT statements to be run.

12 Chapter 2. Fixtures

Pytest Mock Resources, Release 1.2.2

• StaticStatements: Are exactly like a Statements object. The subclass is simply a sentinel to signify
that the user asserts their statement is “safe” to be executed as one of these static actions.

Dynamic Actions

Dynamic actions have unpredictable semantics, and as such the library cannot safely amortize their cost.

Dynamic actions include:

• Statements: A statement can be any arbitrary SQL, which therefore means we cannot know whether it will
react negatively with the test, if executed in a separate transaction. If you’re executing typical CREATE/INSERT
statements, prefer StaticStatements.

• Functions: Obviously a function can do anything it wants, and therefore must be dynamic.

warning

It is important to consider action ordering when using dynamic actions. Upon encountering a dynamic action in a list
of ordered actions, all subsequent actions will be executed as though they were dynamic (i.e. per-test-database).

You should therefore prefer to group all static actions before dynamic ones wherever possible to ensure you get the
most optimal amortization of actions.

For example:

pg = create_postgres_fixture(
Statements('CREATE TABLE ...'),
Base,

)

This will execute all setup dynamically because it encountered a dynamic action (Statements in this case) first.
Ideally the above actions would be reversed, or that the Statements be swapped for a StaticStatements.

2.2 Postgres

Note: The default postgres driver support is psycopg2 for synchronous fixtures, and asyncpg for async fixtures. If
you want to use a different driver, you can configure the drivername field using the pmr_postgres_config fixture:

```python from pytest_mock_resources import PostgresConfig

@pytest.fixture def pmr_postgres_config():

PostgresConfig(drivername=’postgresql+psycopg2’) # but whatever drivername you require.

```

Note however, that the asyncpg driver only works with the async fixture, and the psycopg2 driver only works with the
synchronous fixture. These are inherent attributes of the drivers/support within SQLAlchemy.

2.2. Postgres 13

Pytest Mock Resources, Release 1.2.2

2.3 Redshift

2.3.1 COPY/UNLOAD

COPY and UNLOAD will work out of the box, when you’re testing code which accepts a sqlalchemy engine or session
object, because we can preconfigure it to work properly. In these scenarios, you should simply be able to send in the
fixture provided into your test and be on your merry way.

This should also work seamlessly if you’re testing code which creates its own connection directly. Consider the
following module that creates a redshift engine and then uses said engine to run a COPY command:

src/app.py
from sqlalchemy import create_engine

def main(**connect_args):
engine = get_redshift_engine(connect_args)

return run_major_thing(engine)

def get_redshift_engine(config):
return create_engine(**config)

def run_major_thing(engine):
engine.execute(

"""
COPY x.y FROM 's3://bucket/file.csv' credentials....
"""

)

The redshift fixture should automatically instrument direct calls to psycopg2.connect() (or sqlalchemy.
create_engine().

2.4 SQLite

While SQLite is a widely used database in its own right, we also aim to make SQLite a reasonable stand-in for (at
least) postgres, in tests where possible. We do make postgres tests run as fast as possible, but tests using postgres
objectively run more slowly than those with SQLite.

While SQLite cannot match Postgres perfectly, in many scenarios (particularly those which use ORMs, which tend
to make use of cross-compatible database features) it can be used to more quickly verify the code. And in the event
that you begin using a feature only supportable in postgres, or which behaves differently in SQLite, you’re one s/
create_slite_fixture/create_postgres_fixture away from resolving that problem. Additionally,
you can choose to only use postgres for the subset of tests which require such features.

To that end, we’ve extended the sqlalchemy SQLite dialect to include features to match postgres as closely as possible.
We do however, recommend that use of this dialect is restricted purely to tests in order to be used as a postgres
stand-in, rather than for use in actual application code.

14 Chapter 2. Fixtures

Pytest Mock Resources, Release 1.2.2

2.4.1 Schemas

As an in-memory database (for the most part), SQLite does not behave the same way when encountering schemas.

For example, given sqlalchemy model defined as:

from .models import ModelBase

class User(ModelBase):
__tablename__ ='user'
__table_args__ = {'schema': 'private'}

SQLite generally would produce an error upon use of that table, but will now work by default, and behave similarly to
postgres.

A caveat to this is that SQLite has no notion of a “search path” like in postgres. Therefore, programmatic use altering
the search path from the default “public” (in postgres), or referencing a “public” table as “public.tablename” would
not be supported.

2.4.2 Foreign Keys

SQLite supports FOREIGN KEY syntax when emitting CREATE statements for tables, however by default these
constraints have no effect on the operation of the table.

We simply, turn that support on by default, to match the postgres behavior.

2.4.3 JSON/JSONB

Tables which use either sqlalchemy.dialects.postgresql.JSON/JSONB or sqlalchemy.types.
Json will work as they would in postgres.

SQLite itself, recently added support for json natively, but this allows a much wider version range of SQLite to support
that feature.

2.4.4 Datetime (timezone support)

By default, SQLite does not respect the Datetime(timezone=True) flag. This means that normally a
Datetime column would behave differently from postgres. For example, where postgres would return timezone-
aware datetime.datetime objects, SQLite would return naive datetime.datetime (which do not behave
the same way when doing datetime math).

This does not actually store the timezones of the datetime (as is also true for postgres). It simply matches the timezone-
awareness and incoming timezone conversion behavior you see in postgres.

2.4. SQLite 15

Pytest Mock Resources, Release 1.2.2

2.5 Mongo

Users can test MongoDB dependent code using the create_mongo_fixture.

Consider the following example:

src/some_module.py

def insert_into_customer(mongodb_connection):
collection = mongodb_connection['customer']
to_insert = {"name": "John", "address": "Highway 37"}
collection.insert_one(to_insert)

A user can test this as follows:

tests/some_test.py

from pytest_mock_resources import create_mongo_fixture
from some_module import insert_into_customer

mongo = create_mongo_fixture()

def test_insert_into_customer(mongo):
insert_into_customer(mongo)

collection = mongo['customer']
returned = collection.find_one()

assert returned == {"name": "John", "address": "Highway 37"}

2.5.1 Custom Connections

Custom connections can also be generated via the fixture’s yielded attributes/MONGO_* fixtures:

tests/some_test.py

from pymongo import MongoClient

from pytest_mock_resources import create_mongo_fixture

mongo = create_mongo_fixture()

def test_create_custom_connection(mongo):
client = MongoClient(**mongo.pmr_credentials.as_mongo_kwargs())
db = client[mongo.config["database"]]

collection = db["customers"]
to_insert = [

{"name": "John"},
{"name": "Viola"},

]
collection.insert_many(to_insert)

result = collection.find().sort("name")
returned = [row for row in result]

(continues on next page)

16 Chapter 2. Fixtures

Pytest Mock Resources, Release 1.2.2

(continued from previous page)

assert returned == to_insert

2.6 Moto

Users can test AWS dependent code using the create_moto_fixture.

pytest_mock_resources.create_moto_fixture(*ordered_actions, region_name='us-east-1',
scope='function')

Produce a Moto fixture.

Any number of fixture functions can be created. Under the hood they will all share the same moto server.

Note: Each test executes using a different (fake) AWS account through moto. If you create boto3
client/resource objects outside of the one handed to the test (for example, in the code under test), they
should be sure to use the aws_access_key_id, aws_secret_access_key, aws_session_token,
and endpoint_url given by the <fixturename>.pmr_credentials attribute.

Note: A moto dashboard should be available for debugging while the container is running. By default it would
be available at http://localhost:5555/moto-api/# (but the exact URL may be different depending
on your host/port config.

Parameters

• ordered_actions – Any number of ordered actions to be run on test setup.

• region_name (str) – The name of the AWS region to use, defaults to “us-east-1”.

• scope (str) – The scope of the fixture can be specified by the user, defaults to “function”.

Consider the following example:

src/some_module.py

def list_files(s3_client):
return s3_client.list_objects_v2(Bucket="x", Key="y")

A user could test this as follows:

tests/some_test.py

from pytest_mock_resources import create_moto_fixture
from pytest_mock_resources.fixture.moto import Session

from some_module import list_files

moto = create_moto_fixture()

def test_list_files(moto: Session):
s3_client = moto.client("s3")
files = list_files(s3_client)
assert ...

2.6. Moto 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pytest Mock Resources, Release 1.2.2

The test is handed a proxy-object which should functionally act like a boto3.Session object. Namely you would
generally want to call .client(. . .) or .resource(. . .) on it.

Note: Each test executes using a different (fake) AWS account through moto. If you create boto3
client/resource objects using boto3 directly, outside of the object handed to your test, you should make sure
to pass all the credentials fields into the constructor such that it targets the correct AWS instance/account.

For example:

import boto3
from pytest_mock_resources import create_moto_fixture
from pytest_mock_resources.fixture.moto import Session

moto = create_moto_fixture()

def test_list_files(moto: Session):
kwargs = moto.pmr_credentials.as_kwargs()
s3_client = boto3.client("s3", **kwargs)

Note: A moto dashboard should be available for debugging while the container is running. By default it would be
available at http://localhost:5555/moto-api/# (but the exact URL may be different depending on your
host/port config.

2.6.1 Actions

Similar to ordered “actions” in other fixtures, moto supports the static creation of certain kinds of objects ahead of the
actual test execution as well.

For moto, this represents as physical infrastructure/configuration/objects within the moto “AWS account” being used
by your test.

Per the note above, each test executes in a unique moto “AWS account”. This means that two
create_moto_fixture fixtures with different infrastructure will be completely distinct and not leak state (ei-
ther between tests or between fixtures).

Note: we will absolutely accept feedback on additional kinds of supported objects to add, the current set is motivated
by internal use, but is certainly not exhaustive.

S3

Currently: S3Bucket, S3Object

These objects help reduce boilerplate around setting up buckets/files among tests.

from pytest_mock_resources import create_moto_fixture, S3Bucket, S3Object
from pytest_mock_resources.fixture.moto import Session

bucket = S3Bucket("test")
moto = create_moto_fixture(

S3Bucket("other_bucket"),

(continues on next page)

18 Chapter 2. Fixtures

Pytest Mock Resources, Release 1.2.2

(continued from previous page)

bucket,
bucket.object("test.csv", "a,b,c\n1,2,3"),

)

def test_ls(moto: Session):
resource = moto.resource("s3")
objects = resource.Bucket("test").objects.all()
assert len(objects) == 1

assert objects[0].key == "test.txt"
assert objects[0].get()["Body"].read() == b"a,b,c\n1,2,3"

2.7 Redis

Users can test Redis dependent code using the create_redis_fixture.

pytest_mock_resources.create_redis_fixture(scope='function')
Produce a Redis fixture.

Any number of fixture functions can be created. Under the hood they will all share the same database server.

Note: If running tests in parallel, the implementation fans out to different redis “database”s, up to a 16 (which
is the default container fixed limit). This means you can only run up to 16 simultaneous tests.

Additionally, any calls to flushall or any other cross-database calls will still represent cross-test state.

Finally, the above notes are purely describing the current implementation, and should not be assumed. In the
future, the current database selection mechanism may change, or databases may not be used altogether.

Parameters scope (str) – The scope of the fixture can be specified by the user, defaults to “func-
tion”.

Raises KeyError – If any additional arguments are provided to the function than what is necessary.

Consider the following example:

src/some_module.py

def insert_into_friends(redis_client):
redis_client.sadd("friends:leto", "ghanima")
redis_client.sadd("friends:leto", "duncan")
redis_client.sadd("friends:paul", "duncan")
redis_client.sadd("friends:paul", "gurney")

A user can test this as follows:

tests/some_test.py

from pytest_mock_resources import create_redis_fixture
from some_module import insert_into_friends

redis = create_redis_fixture()

(continues on next page)

2.7. Redis 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError

Pytest Mock Resources, Release 1.2.2

(continued from previous page)

def test_insert_into_friends(redis):
insert_into_friends(redis)

friends_leto = redis.smembers("friends:leto")
friends_paul = redis.smembers("friends:paul")

assert friends_leto == {b"duncan", b"ghanima"}
assert friends_paul == {b"gurney", b"duncan"}

2.7.1 Manual Engine Creation

Engines can be created manually via the fixture’s yielded attributes/REDIS_* fixtures:

tests/some_test.py

from redis import Redis

from pytest_mock_resources import create_redis_fixture

redis = create_redis_fixture()

def test_create_custom_connection(redis):
client = Redis(**redis.pmr_credentials.as_redis_kwargs())
client.set("foo", "bar")
client.append("foo", "baz")
value = client.get("foo").decode("utf-8")
assert value == "barbaz"

20 Chapter 2. Fixtures

CHAPTER

THREE

ASYNC

In general, pytest-mock-resources >=2.0 is required for async support and will naturally require python >= 36.

Async is easily supportable outside pytest-mock-resources, by simply using the pmr_<resource>_config fixture for
the given resource to get a handle on the requisite configuration required to produce a client yourself.

For example:

from sqlalchemy.engine.url import URL
from sqlalchemy.ext.asyncio import create_async_engine

@pytest.fixture
def async_pg(pmr_postgres_config):

or `URL.create` in sqlalchemy 1.4+
create_async_engine(URL(host=pmr_postgres_config.host, database=pmr_postgres_

→˓config.database, ...))

However, we’re happy to support default/built-in async client implementations where applicable.

Today, async engines are implemented for: * postgres, using sqlalchemy >=1.4 (with the asyncpg driver)

Generally, support will be available on a per-fixture basis by way of specifying async_=True to the fixture creation
function.

For example

import pytest
from sqlalchemy import text
from pytest_mock_resources import create_postgres_fixture

postgres_async = create_postgres_fixture(async_=True)

@pytest.mark.asyncio
async def test_basic_postgres_fixture_async(postgres_async):

async with postgres_async.connect() as conn:
await conn.execute(text("select 1"))

21

Pytest Mock Resources, Release 1.2.2

3.1 pytest-asyncio

Generally you will want pytest-asyncio or similar to be installed. This will allow your async fixture to work the same
way normal fixtures function.

22 Chapter 3. Async

CHAPTER

FOUR

CONFIG

In order to support various projects and environments in which tests might be run, each docker-based fixture has the
ability to customize its default configuration.

The precedence of the available config mechanisms follow the order:

• Environment variables

• Fixture Configuration

• Default Configuration

4.1 Environment Variables

In general we would only recommend use of the environment variable config for temporary changes to a value, or for
configuration that is specific to the environment in which it is being run.

A common use case for this mechanism is local port conflicts. When a container is started up, we bind to a pre-
specified port for that resource kind. We (attempt to) avoid conflicts by binding to a non-standard port for that resource
by default, but conflicts can still happen

All configuration options for the given resource are available under env vars named in the pattern:

PMR_{RESOURCE}_{CONFIG}
e.x.
export PMR_POSTGRES_PORT=54321

Resource is the name of the resource, i.e. POSTGRES, MONGO, REDIS, etc

CONFIG is the name of the config name. Every container will support at least: IMAGE, HOST, PORT, and CI_PORT.

4.2 Fixture Configuration

In general, we recommend fixture configuration for persistent configuration that is an attribute of the project itself,
rather than the environment in which the project is being run.

The most common example of this will be image. If you’re running postgres:8.0.0 in production, you should not be
testing with our default image version! Other resource-specific configurations, such as root_database, might also
be typical uses of this mechanism.

Here, the pattern is by defining a fixture in the following pattern:

23

Pytest Mock Resources, Release 1.2.2

@pytest.fixture(scope='session')
def pmr_{resource}_config():

return {Resource}Config(...options...)

I.e. pmr_postgres_config, returning a PostgresConfig type. might look like

Listing 1: conftest.py

import pytest
from pytest_mock_resources import PostgresConfig

@pytest.fixture(scope='session')
def pmr_postgres_config():

return PostgresConfig(image='postgres:11.0.0')

4.3 Default Configuration

Default configuration uses the same mechanism (i.e. fixture configuration) as you might, to pre-specify the default
options, so that the plugin can usually be used as-is with no configuration.

The configuration defaults should not be assumed to be static/part of the API (and typically changes should be irrele-
vant to most users).

See the API docs for details on the current defaults.

24 Chapter 4. Config

CHAPTER

FIVE

CLI

As you start writing tests, you might notice that there’s a small delay after invoking the tests before they execute.
Which can get particularly annoying if you’re only running a small subset of your tests at a time. This delay is because
the default execution mode will kill all the containers that were started by the test suite each time it’s executed.

However, some containers have a larger startup cost than others; Mongo and presto, in particular have significant
startup costs up to 30s! Even Postgres, has ~ 1-2 seconds startup time; which you’ll pay each time you invoke
pytest.

Pytest Mock Resources ships with a small CLI utility pmr, which can be used to help amortize the cost of container
startup between test runs. With it, you can pre-create the container against which the tests will connect.

For Redshift and Postgres:

$ pmr postgres
711f5d5a86896bb4eb76813af4fb6616aee0eff817cdec6ebaf4daa0e9995441
or specify the image
PMR_POSTGRES_IMAGE=postgres:11 pmr postgres
711f5d5a86896bb4eb76813af4fb6616aee0eff817cdec6ebaf4daa0e9995441

For Mongo:

$ pmr mongo
711f5d5a86896bb4eb76813af4fb6616aee0eff817cdec6ebaf4daa0e9995441
or specify the image
PMR_MONGO_IMAGE=mongo:5.0 pmr mongo
711f5d5a86896bb4eb76813af4fb6616aee0eff817cdec6ebaf4daa0e9995441

For MySQL:

$ pmr mysql
711f5d5a86896bb4eb76813af4fb6616aee0eff817cdec6ebaf4daa0e9995441
or specify the image
PMR_MYSQL_IMAGE=postgres:8.0 pmr mysql
711f5d5a86896bb4eb76813af4fb6616aee0eff817cdec6ebaf4daa0e9995441

You can check on the instance’s state via:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
→˓ STATUS PORTS NAMES
711f5d5a8689 postgres:9.6.10-alpine "docker-entrypoint.s..." 16 seconds
→˓ago Up 15 seconds 0.0.0.0:5532->5432/tcp determined_euclid

You can terminate the instance whenever you want via:

25

Pytest Mock Resources, Release 1.2.2

$ pmr --stop postgres
711f5d5a86896bb4eb76813af4fb6616aee0eff817cdec6ebaf4daa0e9995441

26 Chapter 5. CLI

CHAPTER

SIX

CI SERVICE SUPPORT

Depending on the CI service, access to docker-related fixtures may be different than it would be locally. As such,
below is an outline of how to support those fixtures within specific CI services.

6.1 CircleCi

CircleCI 2.0+ default jobs do not have access to a docker directly, but instead interact with a remote docker.

As such, you will need to include the a step in your job to setup remote docker like so:

steps:
- setup_remote_docker
- checkout
...

Furthermore, you should start the service ahead of time using their mechanism of choice:

For 2.0 jobs

jobs:
<YOUR JOB NAME>:

docker:
- image: <YOUR IMAGE>
- image: <SERVICE IMAGE>

For 2.1+ jobs

version: 2.1

executors:
foo:
docker:

- image: <YOUR IMAGE>
- image: <SERVICE IMAGE>

jobs:
test:
executor: foo

27

Pytest Mock Resources, Release 1.2.2

6.1.1 Postgres/Redshift Container

Specifically for postgres/redshift, the - image: <SERVICE IMAGE> portion should look like

- image: postgres:9.6.10-alpine # or whatever image/tag you'd like
environment:
POSTGRES_DB: dev
POSTGRES_USER: user
POSTGRES_PASSWORD: password

You will receive a ContainerCheckFailed: Unable to connect to [. . .] Postgres test container error in CI if the above
is not added to you job config.

6.1.2 Mongo Container

Specifically for mongo, the - image: <SERVICE IMAGE> portion should look like

- image: circleci/mongo:3.6.12 # or whatever image/tag you'd like
command: "mongod --journal"

You will receive a ContainerCheckFailed: Unable to connect to [. . .] Mongo test container error in CI if the above is
not added to you job config.

6.2 GitLab

For pytest-mock-resources to work on GitLab use of dind service is required. Below is a sample configura-
tion:

services:
- docker:dind

variables:
DOCKER_TLS_CERTDIR: ''

stages:
- testing

testing-job:
image: python:3.6.8-slim # Use a python version that matches your project
stage: testing
variables:
DOCKER_HOST: tcp://docker:2375
PYTEST_MOCK_RESOURCES_HOST: docker

before_script:
- apt-get update && apt-get install -y wget libpq-dev gcc
- wget -O get-docker.sh https://get.docker.com
- chmod +x get-docker.sh && ./get-docker.sh

script:
- pip install -r requirements.txt
- pytest -x tests

28 Chapter 6. CI Service Support

CHAPTER

SEVEN

API

7.1 Fixture Functions

class pytest_mock_resources.StaticStatements(*statements)
A discriminator for statements which are safe to execute exactly once.

pytest_mock_resources.create_mongo_fixture(scope='function')
Produce a mongo fixture.

Any number of fixture functions can be created. Under the hood they will all share the same database server.

Parameters scope – Passthrough pytest’s fixture scope.

pytest_mock_resources.create_mysql_fixture(*ordered_actions, scope='function',
tables=None, session=None, en-
gine_kwargs=None)

Produce a MySQL fixture.

Any number of fixture functions can be created. Under the hood they will all share the same database server.

Parameters

• ordered_actions – Any number of ordered actions to be run on test setup.

• scope – Passthrough pytest’s fixture scope.

• tables – Subsets the tables created by ordered_actions. This is generally most useful
when a model-base was specified in ordered_actions.

• session – Whether to return a session instead of an engine directly. This can either be a
bool or a callable capable of producing a session.

• engine_kwargs – Optional set of kwargs to send into the engine on creation.

pytest_mock_resources.create_postgres_fixture(*ordered_actions, scope='function', ta-
bles=None, session=None, async_=False,
createdb_template='template1',
engine_kwargs=None, tem-
plate_database=True, ac-
tions_share_transaction=None)

Produce a Postgres fixture.

Any number of fixture functions can be created. Under the hood they will all share the same database server.

Parameters

• ordered_actions – Any number of ordered actions to be run on test setup.

• scope – Passthrough pytest’s fixture scope.

29

Pytest Mock Resources, Release 1.2.2

• tables – Subsets the tables created by ordered_actions. This is generally most useful
when a model-base was specified in ordered_actions.

• session – Whether to return a session instead of an engine directly. This can either be a
bool or a callable capable of producing a session.

• async – Whether to return an async fixture/client.

• createdb_template – The template database used to create sub-databases. “tem-
plate1” is the default chosen when no template is specified.

• engine_kwargs – Optional set of kwargs to send into the engine on creation.

• template_database – Defaults to True. When True, amortizes the cost of performing
database setup through ordered_actions, by performing them once into a postgres “tem-
plate” database, then creating all subsequent per-test databases from that template.

• actions_share_transaction – When True, the transaction used by ordered_actions
context will be the same as the one handed to the test function. This is required in order
to support certain usages of ordered_actions, such as the creation of temp tables through
a `Statements object. By default, this behavior is enabled for synchronous fixtures for
backwards compatibility; and disabled by default for asynchronous fixtures (the way v2-
style/async features work in SQLAlchemy can lead to bad default behavior).

pytest_mock_resources.create_redis_fixture(scope='function')
Produce a Redis fixture.

Any number of fixture functions can be created. Under the hood they will all share the same database server.

Note: If running tests in parallel, the implementation fans out to different redis “database”s, up to a 16 (which
is the default container fixed limit). This means you can only run up to 16 simultaneous tests.

Additionally, any calls to flushall or any other cross-database calls will still represent cross-test state.

Finally, the above notes are purely describing the current implementation, and should not be assumed. In the
future, the current database selection mechanism may change, or databases may not be used altogether.

Parameters scope (str) – The scope of the fixture can be specified by the user, defaults to “func-
tion”.

Raises KeyError – If any additional arguments are provided to the function than what is necessary.

pytest_mock_resources.create_redshift_fixture(*ordered_actions, scope='function', ta-
bles=None, session=None, async_=False,
createdb_template='template1',
engine_kwargs=None, tem-
plate_database=True, ac-
tions_share_transaction=None)

Produce a Redshift fixture.

Any number of fixture functions can be created. Under the hood they will all share the same database server.

Note that, by default, redshift uses a postgres container as the database server and attempts to reintroduce
approximations of Redshift features, such as S3 COPY/UNLOAD, redshift-specific functions, and other specific
behaviors.

Parameters

• ordered_actions – Any number of ordered actions to be run on test setup.

• scope – Passthrough pytest’s fixture scope.

30 Chapter 7. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError

Pytest Mock Resources, Release 1.2.2

• tables – Subsets the tables created by ordered_actions. This is generally most useful
when a model-base was specified in ordered_actions.

• session – Whether to return a session instead of an engine directly. This can either be a
bool or a callable capable of producing a session.

• async – Whether to return an async fixture/client.

• createdb_template – The template database used to create sub-databases. “tem-
plate1” is the default chosen when no template is specified.

• engine_kwargs – Optional set of kwargs to send into the engine on creation.

• template_database – Defaults to True. When True, amortizes the cost of performing
database setup through ordered_actions, by performing them once into a postgres “tem-
plate” database, then creating all subsequent per-test databases from that template.

• actions_share_transaction – When True, the transaction used by ordered_actions
context will be the same as the one handed to the test function. This is required in order
to support certain usages of ordered_actions, such as the creation of temp tables through
a `Statements object. By default, this behavior is enabled for synchronous fixtures for
backwards compatibility; and disabled by default for asynchronous fixtures (the way v2-
style/async features work in SQLAlchemy can lead to bad default behavior).

pytest_mock_resources.create_sqlite_fixture(*ordered_actions, scope='function',
tables=None, session=None, deci-
mal_warnings=False, postgres_like=True)

Produce a SQLite fixture.

Any number of fixture functions can be created. Under the hood they will all share the same database server.

Parameters

• ordered_actions – Any number of ordered actions to be run on test setup.

• scope – Passthrough pytest’s fixture scope.

• tables – Subsets the tables created by ordered_actions. This is generally most useful
when a model-base was specified in ordered_actions.

• session – Whether to return a session instead of an engine directly. This can either be a
bool or a callable capable of producing a session.

• decimal_warnings – Whether to show sqlalchemy decimal warnings related to preci-
sion loss. The default False suppresses these warnings.

• postgres_like – Whether to add extra SQLite features which attempt to mimic postgres
enough to stand in for it for testing.

7.2 Fixture Config

class pytest_mock_resources.MongoConfig(**kwargs)
Define the configuration object for mongo.

Parameters

• image (str) – The docker image:tag specifier to use for mongo containers. Defaults to
"mongo:3.6".

• host (str) – The hostname under which a mounted port will be available. Defaults to
"localhost".

7.2. Fixture Config 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pytest Mock Resources, Release 1.2.2

• port (int) – The port to bind the container to. Defaults to 28017.

• ci_port (int) – The port to bind the container to when a CI environment is detected.
Defaults to 27017.

• root_database (str) – The name of the root mongo database to create. Defaults to
"dev-mongo".

class pytest_mock_resources.MysqlConfig(**kwargs)
Define the configuration object for MySql.

Parameters

• image (str) – The docker image:tag specifier to use for mysql containers. Defaults to
"mysql:5.6".

• host (str) – The hostname under which a mounted port will be available. Defaults to
"localhost".

• port (int) – The port to bind the container to. Defaults to 5532.

• ci_port (int) – The port to bind the container to when a CI environment is detected.
Defaults to 5432.

• username (str) – The username of the root user Defaults to "user".

• password (str) – The password of the root password Defaults to "password".

• root_database (str) – The name of the root database to create. Defaults to "dev".

class pytest_mock_resources.PostgresConfig(**kwargs)
Define the configuration object for postgres.

Parameters

• image (str) – The docker image:tag specifier to use for postgres containers. Defaults to
"postgres:9.6.10-alpine".

• host (str) – The hostname under which a mounted port will be available. Defaults to
"localhost".

• port (int) – The port to bind the container to. Defaults to 5532.

• ci_port (int) – The port to bind the container to when a CI environment is detected.
Defaults to 5432.

• username (str) – The username of the root postgres user Defaults to "user".

• password (str) – The password of the root postgres password Defaults to
"password".

• root_database (str) – The name of the root postgres database to create. Defaults to
"dev".

• drivername (str) – The sqlalchemy driver to use Defaults to
"postgresql+psycopg2".

class pytest_mock_resources.RedisConfig(**kwargs)
Define the configuration object for redis.

Parameters

• image (str) – The docker image:tag specifier to use for redis containers. Defaults to
"redis:5.0.7".

32 Chapter 7. API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Pytest Mock Resources, Release 1.2.2

• host (str) – The hostname under which a mounted port will be available. Defaults to
"localhost".

• port (int) – The port to bind the container to. Defaults to 6380.

• ci_port (int) – The port to bind the container to when a CI environment is detected.
Defaults to 6379.

pytest_mock_resources.pmr_mongo_config()
Override this fixture with a MongoConfig instance to specify different defaults.

Examples

>>> @pytest.fixture(scope='session')
... def pmr_mongo_config():
... return MongoConfig(image="mongo:3.4", root_database="foo")

pytest_mock_resources.pmr_mysql_config()
Override this fixture with a MysqlConfig instance to specify different defaults.

Examples

>>> @pytest.fixture(scope='session')
... def pmr_mysql_config():
... return MysqlConfig(image="mysql:5.2", root_database="foo")

pytest_mock_resources.pmr_postgres_config()
Override this fixture with a PostgresConfig instance to specify different defaults.

Examples

>>> @pytest.fixture(scope='session')
... def pmr_postgres_config():
... return PostgresConfig(image="postgres:9.6.10", root_database="foo")

pytest_mock_resources.pmr_redis_config()
Override this fixture with a RedisConfig instance to specify different defaults.

Examples

>>> @pytest.fixture(scope='session')
... def pmr_redis_config():
... return RedisConfig(image="redis:6.0")

7.2. Fixture Config 33

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Pytest Mock Resources, Release 1.2.2

34 Chapter 7. API

CHAPTER

EIGHT

CONTRIBUTING

8.1 Prerequisites

If you are not already familiar with Poetry, this is a poetry project, so you’ll need this!

8.2 Getting Setup

See the Makefile for common commands, but for some basic setup:

Installs the package with all the extras
make install

And you’ll want to make sure you can run the tests and linters successfully:

Runs CI-level tests, with coverage reports
make test lint

8.2.1 Tests

A feature of the package is that it doesn’t stop you from running tests in parallel, such as by using pytest-xdist.
As such make test runs the tests in a few different modes.

In general, you can simply run pytest, or e.x. pytest tests/fixture/database/test_udf.py to run specific subsets of the
tests.

8.2.2 Docs

First, install the docs requirements with pip install -r docs/requirements.txt, then use sphinx as
normal. i.e.

cd docs
make html # one-time build of the docs
or
make livehtml # Starts a webserver with livereload of changes

35

https://poetry.eustace.io/

Pytest Mock Resources, Release 1.2.2

8.3 Need help

Submit an issue!

36 Chapter 8. Contributing

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

37

Pytest Mock Resources, Release 1.2.2

38 Chapter 9. Indices and tables

INDEX

C
create_moto_fixture() (in module

pytest_mock_resources), 17
create_redis_fixture() (in module

pytest_mock_resources), 19

39

	Quickstart
	Docker
	Introduction
	The Pitch
	Existing Resources (many more possible)
	Features
	Installation
	Possible Future Resources
	Python 2

	Fixtures
	Relational Database Fixtures
	Postgres
	Redshift
	SQLite
	Mongo
	Moto
	Redis

	Async
	pytest-asyncio

	Config
	Environment Variables
	Fixture Configuration
	Default Configuration

	CLI
	CI Service Support
	CircleCi
	GitLab

	API
	Fixture Functions
	Fixture Config

	Contributing
	Prerequisites
	Getting Setup
	Need help

	Indices and tables
	Index

